Phrase-Based Statistical Machine Translation: A Level of Detail Approach
نویسندگان
چکیده
The merit of phrase-based statistical machine translation is often reduced by the complexity to construct it. In this paper, we address some issues in phrase-based statistical machine translation, namely: the size of the phrase translation table, the use of underlying translation model probability and the length of the phrase unit. We present Level-Of-Detail (LOD) approach, an agglomerative approach for learning phrase-level alignment. Our experiments show that LOD approach significantly improves the performance of the word-based approach. LOD demonstrates a clear advantage that the phrase translation table grows only sub-linearly over the maximum phrase length, while having a performance comparable to those of other phrase-based approaches.
منابع مشابه
Statistical Machine Translation and Automatic Speech Recognition under Uncertainty
Statistical modeling techniques have been applied successfully to natural language processing tasks such as automatic speech recognition (ASR) and statistical machine translation (SMT). Since most statistical approaches rely heavily on availability of data and the underlying model assumptions, reduction in uncertainty is critical to their optimal performance. In speech translation, the uncertai...
متن کاملPhrase Based Language Model For Statistical Machine Translation
We consider phrase based Language Models (LM), which generalize the commonly used word level models. Similar concept on phrase based LMs appears in speech recognition, which is rather specialized and thus less suitable for machine translation (MT). In contrast to the dependency LM, we first introduce the exhaustive phrase-based LMs tailored for MT use. Preliminary experimental results show that...
متن کاملSampling Phrase Tables for the Moses Statistical Machine Translation System
The idea of virtual phrase tables for statistical machine translation (SMT) that construct phrase table entries on demand by sampling a fully indexed bitext was first proposed ten years ago by Callison-Burch et al. (2005). However, until recently (Germann, 2014) no working and practical implementation of this approach was available in the Moses SMT system. We describe and evaluate this implemen...
متن کاملNovel Reordering Approaches in Phrase-Based Statistical Machine Translation
This paper presents novel approaches to reordering in phrase-based statistical machine translation. We perform consistent reordering of source sentences in training and estimate a statistical translation model. Using this model, we follow a phrase-based monotonic machine translation approach, for which we develop an efficient and flexible reordering framework that allows to easily introduce dif...
متن کاملA phrase-level machine translation approach for disfluency detection using weighted finite state transducers
We propose a novel algorithm to detect disfluency in speech by reformulating the problem as phrase-level statistical machine translation using weighted finite state transducers. We approach the task as translation of noisy speech to clean speech. We simplify our translation framework such that it does not require fertility and alignment models. We tested our model on the Switchboard disfluency-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005